
Provably Safe and Scalable Multi-Vehicle Trajectory Planning
Somil Bansal∗1, Mo Chen∗2, Ken Tanabe3, Claire J. Tomlin1

Abstract—In [1], the Sequential Trajectory Planning (STP)
method was proposed, which allows multiple vehicle trajectory
planning to be done with a computation complexity that scales
linearly with the number of vehicles. However, the STP compu-
tation is not tractable for large-scale systems using the currently
available tools. In this work, we introduce BEACLS, a C++-
based reachability toolbox that can leverage GPU parallelization
to improve computation speed of HJ reachability by nearly 100
times compared to existing MATLAB implementations. We then
combine BEACLS with STP for safe, large-scale multiple UAV
planning in a city environment and a multi-city environment. We
show that intuitive multi-lane structures naturally emerge, and
that the size of disturbances and vehicle density are primary
factors determining the number and width of lanes. We also
extend the STP method to safely account for an adversarial
intruder during trajectory planning. In the proposed formulation,
the number of vehicles that needs to replan is a design parameter
that can be chosen based on the computational resources available
during run time. The proposed formulation along with BEACLS
provide both an algorithm as well as an efficient computational
tool for resilient, large-scale multiple vehicle trajectory planning.

I. INTRODUCTION

Recently, there has been an immense surge of interest in the
use of unmanned aerial systems (UASs) for civil applications
[2]–[6], such as package delivery, precision agriculture and
surveillance [7], [8]. These applications will involve unmanned
aerial vehicles (UAVs) flying in urban environments, poten-
tially in close proximity to humans, other UAVs, and other
important assets. As a result, new scalable ways to organize an
airspace are required in which potentially thousands of UAVs
can fly together [9], [10].

For this to be successful, a safe, multiple vehicle trajectory
planning algorithm needs to be available. Current solutions
propose to partition and reserve regions of airspace in space
and time [9], [10], yet a way to do this flexibly and dy-
namically which corresponds to the demand is being sought
after. Previous work has addressed this problem under different
assumptions. In some studies, specific control strategies for
the vehicles are derived using Voronoi paths [11] or mixed-
integer programming-based solutions [12]. These approaches
tend to be computationally intractable as the number of agents
grow. Approaches involving induced velocity obstacles [13]–
[16], virtual potential fields [17], [18], and analytical PDE-
based methods [19] to maintain collision avoidance are also
available, yet these have not considered planning and collision

This research is supported by NSF under CPS:ActionWebs (CNS-931843),
under the CPS Frontiers VehiCal project (1545126), by the UC-Philippine-
California Advanced Research Institute under project IIID-2016-005, and by
the ONR MURI Embedded Humans (N00014-16-1-2206).

∗ Both authors contributed equally to this work.
1 The authors are with the Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, CA 94720 USA (e-
mail: {somil, tomlin}@berkeley.edu).

2 The author is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada (e-mail: mochen@cs.sfu.ca).

3 The author is with the Center for Semiconductor Research & Devel-
opment, Toshiba Corporation, Minato-ku, Tokyo 105-8001, Japan (e-mail:
nekebanat@gmail.com).

avoidance simultaneously. Other related work is in the colli-
sion avoidance problem without path planning. These results
include those that assume the system has a linear model [20]–
[22], rely on a linearization of the system model [23]–[25],
assume a simple positional or planar state space [26], [27],
and many others [28]–[30]. Methods which do combine both
planning and collision avoidance typically make simplifying
assumptions about the vehicle dynamics [31]–[33].

Other works take a distributed or decentralized approach
wherein the trajectory planning problem is divided in a series
of smaller sub-problems [34]–[39]. The typical motivation for
this line of work is that each of these sub-problems can be
solved much faster than solving one large centralized problem.
However, most of these works focus on planar motion with
simplified vehicle dynamics. These approaches also typically
struggle with enforcing global planning constraints [40]. Other
works achieve coordination between vehicles by enforcing
temporal constraints on the speed profiles or path characteris-
tics [41], [42], effectively decoupling the planning state-space.

However, scalable methods to flexibly plan provably safe
and dynamically feasible trajectories without making strong
assumptions on the vehicles’ dynamics and other vehicles’ mo-
tion are still lacking. Moreover, any trajectory planning scheme
that addresses collision avoidance must also guarantee both
goal satisfaction and safety of UAVs despite disturbances and
communication faults [10]. Furthermore, unexpected scenarios
such as UAV malfunctions or even UAVs with malicious intent
need to be accounted for.

Hamilton-Jacobi (HJ) reachability-based methods [43]–[48]
could be particularly suitable for this problem as formal guar-
antees are provided without making such strong assumptions
about the other vehicles’ motion. In this context, one computes
the reach-avoid set, defined as the set of states from which the
system can be driven to a desired configuration or trajectory
while satisfying (potentially) time-varying state constraints at
all times. A major practical appeal of this approach stems
from the availability of modern numerical tools which can
compute various definitions of reachable sets [49]–[52]. These
numerical tools have been successfully used to solve a vari-
ety of differential games, trajectory planning problems, and
optimal control problems [53]–[56]. However, reachable set
computations involve solving a HJ partial differential equation
(PDE) or variational inequality (VI) on a grid representing a
discretization of the state space, resulting in an exponential
scaling of computational complexity with respect to the system
dimension. Therefore, reachability analysis or other dynamic
programming-based methods alone are not suitable for the
problem considered here.

To overcome this problem, the priority-based Sequential
Trajectory Planning (STP) method has been proposed [57],
[58]. In this context, higher-priority vehicles plan their trajec-
tories without taking into account the lower-priority vehicles,
and lower-priority vehicles treat higher-priority vehicles as
moving obstacles. Under this assumption, time-varying for-
mulations of reachability [46], [48] can be used to obtain
the optimal and provably safe trajectories for each vehicle

sequentially, starting from the highest-priority vehicle. Thus,
the curse of dimensionality is overcome at the cost of a
structural assumption, under which the computation com-
plexity scales just linearly with the number of vehicles. In
addition, such a structure has the potential to flexibly divide
up the airspace for the use of many UAVs and allows flexible
multi-vehicle trajectory planning and re-planning. Practically,
different economic mechanisms can be used to establish a
priority order. One example could be first-come-first-serve
mechanism, as highlighted in NASA’s concept of operations
for UAS traffic management [10].

Previous work [1], [58] respectively extends the original
STP method [57] to scenarios in which disturbances and
adversarial intruders are present in the system. However,
these have not been sufficient to allow STP used for large-
scale trajectory planning, involving, for example hundreds
to thousands of vehicles. In this paper, we focus on these
computational aspects of multi-vehicle trajectory planning.
Our contributions in this paper are three-fold:

1) We present BEACLS, a C++-based toolbox that paral-
lelizes the numerical algorithms for solving the HJ PDE
using graphics processing units (GPUs). This speeds up
the computation time by nearly 100 times compared to
state-of-the-art MATLAB implementations. GPU paral-
lelization allows us to tractably solve many HJ PDEs.
We combine BEACLS with the STP method to obtain
trajectories of 200 UAVs flying over a large multi-city
region, allowing provably safe trajectory planning in the
real world for large-scale systems.

2) Through large-scale multiple UAV simulations, we
demonstrate how different types of space-time trajectories
emerge naturally for different disturbance conditions and
other problem parameters. These emerging behaviors,
while being provably safe, are also intuitive and would
facilitate human monitoring and airspace design.

3) We propose a new method to make the airspace more
resilient to intruder vehicles. Compared to the method in
[1], in which a single intruder may cause all vehicles to
re-plan their trajectories, our proposed method is more
practical and resilient: it allows one to set a limit on the
maximum number of vehicles that may need to re-plan
due to the presence of an intruder.

The rest of the paper is organized as follows. In Section
II, we present an overview of time-varying reachability and
basic STP algorithms in [57], [58]. In Section III, we present
our new, more resilient intruder rejection method. Section IV
introduces BEACLS, our GPU-parallelized implementation of
the reachability toolbox used to run our simulations. In Section
V and VI, we present our large-scale multiple UAV simulations
results in a city environment and a multi-city environment
respectively. Finally, in Section VII, we present the simulation
results for the multiple UAV city environment setting in the
presence of an intruder.

II. BACKGROUND

In this section, we summarize first the basics of time-varying
reachability analysis [48], and then the STP algorithm in [58].

A. Time-Varying Hamilton-Jacobi Reachability
Due to its flexibility with respect to time-varying systems,

and optimality of the solution it provides, Hamilton-Jacobi

reachability analysis [44], [46], [48], [59] is used to analyze
the STP problem. This involves computing either a backward
reach-avoid set (BRS) V , a forward reach-avoid set (FRS)
W , or a sequence of BRSs and FRSs, given some target
set L, time-varying obstacle G(t) which captures trajectories
of higher-priority vehicles, and the Hamiltonian function H
which captures the system dynamics as well as the roles of
the control and disturbance. Intuitively, the BRS represents the
set of states from which a vehicle can reach the target set L
while avoiding the obstacles G(·), and the FRS represents the
sets of states that can be reached starting from the target set
L. For details on HJ reachability and its application in STP,
we encourage the reader to refer to [1], [59].

In this paper, the BRS V in a time interval [t, tf] (for fixed
tf) or FRS W in a time interval [t0, t] (for fixed t0) will
be denoted by V(t, tf) or W(t0, t) respectively. The BRS
V(t, tf) can be computed by solving the following final value
HJ variational inequality:

max
{

min{DtV (t, x) +H(t, x,∇V (t, x)), l(x)− V (t, x)},

− g(t, x)− V (t, x)
}

= 0, t ≤ tf
V (tf , x) = max{l(x),−g(tf , x)}

(1)
In a similar fashion, the FRS W(t0, t) can be computed by

solving the following initial value HJ PDE:

DtW (t, x)+H(t, x,∇W (t, x)) = 0, t ≥ t0
W (t0, x) = l(x)

(2)

In both (1) and (2), the function l(x) is the implicit surface
function representing the target set L = {x : l(x) ≤ 0}.
Similarly, the function g(t, x) is the implicit surface function
representing the time-varying obstacles G(t) = {x : g(t, x) ≤
0}. The BRS V(t, tf) and FRS W(t0, t) are given by

V(t, tf) = {x : V (t, x) ≤ 0}
W(t0, t) = {x : W (t, x) ≤ 0} (3)

Optimizing the Hamiltonian H gives the optimal control
u∗(t, x) and optimal disturbance d∗(t, x), once V is deter-
mined.

To solve the PDEs in (1) and (2), the level set toolbox has
been developed [52]. The toolbox is implemented in MATLAB
and is equipped to solve any final-value HJ PDE using the Lax
Friedrichs numerical scheme [60]. Since different reachable set
computations can be ultimately posed as solving a final-value
HJ PDE, the level set toolbox is fully equipped to compute
various types of reachable sets. This toolbox has been further
augmented by the Hamilton-Jacobi optimal control toolbox (or
helperOC) to facilitate reachable set computations for a variety
of nonlinear systems. A quick-start guide to these tools has
been presented in [59]. In this paper, we build upon these
works to develop a new toolbox that can leverage the modern
computational tools such as GPUs for significantly improving
the computation speed of reachable sets.

B. Sequential Trajectory Planning Under Disturbances

Consider N vehicles Qi, i = 1, . . . , N (also denoted as STP
vehicles) which participate in the STP process. We assume
their dynamics are given by

ẋi = fi(xi, ui, di), t ≤ tSTA
i (4)

ui ∈ Ui, di ∈ Di, i = 1 . . . , N (5)

where xi ∈ Rni , ui ∈ Ui and di ∈ Di, respectively represent
the state, control and disturbance experienced by vehicle Qi.
We partition the state xi into the position component pi ∈ Rnp

and the non-position component hi ∈ Rni−np : xi = (pi, hi).
We will use the sets Ui,Di to respectively denote the set
of allowable controls and disturbances at each time t, and
Ui,Di to respectively denote the set of allowable functions
from which the control and disturbance functions ui(·), di(·)
are drawn.

Each vehicle Qi has initial state x0
i , and aims to reach its

target Li by some scheduled time of arrival tSTA
i . The target

in general represents some set of desirable states, for example
the destination of Qi. On its way to Li, Qi must avoid a set of
static obstacles Ostatic

i ⊂ Rni , which could represent any set of
states, such as positions of tall buildings, that are forbidden.
Each vehicle Qi must also avoid the danger zones with respect
to every other vehicle Qj , j 6= i. For simplicity, we define the
danger zone of Qi with respect to Qj to be

Zij = {(xi, xj) : ‖pi − pj‖2 ≤ Rc}. (6)

Vehicles Qi and Qj are said to have collided if (xi, xj) ∈ Zij .
Given the set of STP vehicles, their targets Li, the static

obstacles Ostatic
i , and the vehicles’ danger zones with respect

to each other Zij , the goal of STP is as follows. For each
vehicle Qi, synthesize a controller which guarantees that Qi

reaches its target Li at or before the scheduled time of arrival
tSTA
i , while avoiding the static obstacles Ostatic

i , and the danger
zones with respect to all other vehicles Zij , j 6= i. In addition,
we would like to obtain the latest departure time tLDT

i such
that Qi can still arrive at Li on time.

Due to the high dimensionality of the multiple vehicle joint
state-space, a direct dynamic programming-based solution is
intractable. Therefore, the authors in [1], [57] proposed to
assign a priority to each vehicle, and perform STP given
the assigned priorities. Without loss of generality, let Qk

have a higher-priority than Qi if k < i. Under the STP
scheme, higher-priority vehicles can ignore the presence of
lower-priority vehicles, and perform trajectory planning with-
out taking into account the lower-priority vehicles. A lower-
priority vehicle Qi, on the other hand, must ensure that it
does not enter the danger zones of the higher-priority vehicles
Qk, k < i. Each higher-priority vehicle Qk induces a set of
time-varying obstacles Ok

i (t), which represents the possible
states of Qi such that a collision between Qi and Qk could
occur. It is straightforward to see that if each vehicle Qi is
able to plan a trajectory that takes it to Li while avoiding
the static obstacles Ostatic

i , and the danger zones of higher-
priority vehicles Ok

i (·), k < i, then the set of STP vehicles
Qi, i = 1, . . . , N would all be able to reach their targets safely.

To obtain a trajectory of vehicle Qi that is robust to
disturbances, each vehicle uses a reduced control authority
Up
i ⊂ Ui for planning and goal satisfaction, reserving the

remaining control authority for disturbance rejection. During
planning, possible reference trajectories are computed that
the vehicle can track in the absence of disturbances. The
reference trajectories can be obtained using the following
system dynamics:

ẋr,i = fi(xr,i, ur,i), t ≤ tSTA
i (7)

ur,i ∈ Ũi, i = 1 . . . , N,

where the particular reference trajectory xr,i(t) is obtained
by choosing a reference control function ur,i ∈ Ũi. Next, a
bound on the maximum deviation from the reference trajectory
due to the disturbances is computed. Thus, instead of directly
accounting for disturbances when planning trajectories, one
first augments the time-varying obstacle by this bound to
obtain the augmented obstacles, which ensures that Qi will not
collide with the obstacles in the presence of disturbances. One
then reduces the size of Li by the same amount to obtain L̃i,
which ensures that the vehicle safely reaches its goal despite
any trajectory tracking errors resulting from disturbances. The
reader is encouraged to refer to [1] for details about the STP
algorithm that is robust to disturbances.

III. RESPONSE TO INTRUDERS

We now propose a novel algorithm that can account for an
intruder vehicle QI in the system. An intruder vehicle may
simply be a non-participating vehicle that could accidentally
collide with other vehicles, or it could be one with malicious
intent. This general definition of intruder allows us to develop
algorithms that can also account for vehicles who are not
communicating with the STP vehicles or do not know about
the STP structure. In this section, our goal is to design a
control policy for each vehicle that ensures separation with
the intruder and other STP vehicles, and a successful transit
to the destination.

A. Problem Setup and Solution Approach for Intruder Avoid-
ance

In general, the effect of intruders on vehicles in structured
flight can be unpredictable, since the intruders in principle
could be adversarial in nature, and the number of intruders
could be arbitrary. Therefore, to make our analysis tractable,
we make the following two assumptions.

Assumption 1: At most one intruder affects the STP vehicles
at any given time. The intruder is removed after a duration of
tIAT.
This assumption can be valid in situations where intruders are
rare, and that some fail-safe or enforcement mechanism exists
to force the intruder out of the planning space. Practically,
over a large region of the unmanned airspace, this assump-
tion implies that there would be one intruder vehicle per
“planning region”. Each planning region would perform STP
independently from the others. The entire large region would
be composed of several planning regions, and possibly several
intruder vehicles. Note that we do not pose any restriction
on the time at which intruder appears in the system; we only
assume that once the intruder appears, it stays for a maximum
duration of tIAT.

Assumption 2: The dynamics of the intruder are known and
given by ẋI = fI(xI , uI , dI).
Assumption 2 is required for HJ reachability analysis. In
situations where the dynamics of the intruder are not known
exactly, a conservative model of the intruder may be used
instead. We also denote the initial state of the intruder as x0

I .
Note that we only assume that the dynamics of the intruder

are known, but its initial state x0
I , control uI and disturbance

dI it experiences are unknown.
Under the above assumptions, we present an intruder avoid-

ance algorithm that ensures that only a small and fixed number
of vehicles, k̄, needs to replan their trajectories due to the
intruder, regardless of the total number of vehicles, resulting
in a constant replanning time. This is often an important
considerations for real-world systems, since the replanning
neeeds to be done during the runtime. Moreover, k̄ is a
design parameter, which can be chosen based on the resources
available during run time.

Our algorithm consists of two phases: the planning phase
and the replanning phase. In the planning phase, it is ensured
that any two vehicles are sufficiently far enough from each
other such that an intruder can be in the vicinity of at most k̄
vehicles within the duration of tIAT. This division of the flight
space guarantees that the intruder can affect the trajectory
of at most k̄ vehicles despite its best efforts, resulting in
at most k̄ replanning problems. In the replanning phase, we
replan the trajectories of the affected vehicles by assigning
the affected vehicles the lowest priority and using the STP
algorithm presented in Section II-B.

To design the flight space during the planning phase, we
compute a separation region for each vehicle such that the
vehicle needs to react to the intruder if and only if the intruder
is inside this separation region. We then compute a buffer
region between the separation regions of any two vehicles such
that the intruder requires at least a duration of tBRD = tIAT

k̄
to

travel through this region. Thus, within the duration of tIAT,
the intruder can force at most k̄ STP vehicles to deviate from
their trajectories.

Remark 1: For brevity, we present all our analyses and
results in this section assuming that all STP vehicles have
same dynamics and control constraints, and the intruder has
the same state space as STP vehicles. However, the analysis
to follow is more general and can easily be extended to the
scenarios where the above assumptions do not hold. We refer
the interested readers to the extended version of this section
[61] for more details.

B. Computation of Separation and Buffer Regions
The separation region, Si(t), denotes the set of states of

the intruder for which the vehicle Qi is forced to apply an
avoidance maneuver. Si(t) is given by the set of states from
which the joint states of QI and Qi can enter the danger zone
ZiI despite the best efforts of Qi to avoid QI . We define the
relative dynamics between QI and Qi:

xIi = xI − xi, ẋIi = fr(xIi, ui, uI , di, dI) (8)

In relative state space, the set of potentially unsafe states is
given by the backward reachable set VA

i (τ, tIAT), τ ∈ [0, tIAT]:

VA
i (τ, tIAT) ={y : ∀ui(·) ∈ Ui,∃uI(·) ∈ UI ,∃di(·) ∈ Di,

∃dI(·) ∈ DI , xIi(·) satisfies (8),

∃s ∈ [τ, tIAT], xIi(s) ∈ LA
i , xIi(τ) = y},

LA
i ={xIi : ‖pIi‖2 ≤ Rc}.

(9)
VA
i can be computed using the HJI-VI in (1) with Hamiltonian

HA
i (xIi, λ) = max

ui∈Ui
min

uI∈UI ,
dI∈DI ,
di∈Di

λ · fr(xIi, ui, uI , di, dI). (10)

The interpretation of VA
i (τ, tIAT) is that if Qi starts inside this

set, i.e., xIi(t) ∈ VA
i (τ, tIAT), then the intruder can force Qi

to enter the danger zone ZiI within a duration of (tIAT − τ),
regardless of the control applied by the vehicle. If Qi starts
at the boundary of this set (denoted as ∂VA

i (τ, tIAT)), i.e.,
xIi(t) ∈ ∂VA

i (τ, tIAT), it can barely avoid the intruder for
a duration of (tIAT − τ) using the optimal avoidance control,
uA
i , that maximizes the Hamiltonian

uA
i (xIi) = arg max

ui∈Ui
min

uI∈UI ,
dI∈DI ,
di∈Di

λ · fr(xIi, ui, uI , di, dI). (11)

Finally, if Qi starts outside VA
i , then Qi and QI cannot

instantaneously enter the danger zone ZiI , irrespective of the
control applied by them at time t. In fact, Qi can safely apply
any control as long as it is outside the boundary of this set,
but will have to apply the avoidance control once it reaches
the boundary. Given VA

i , the separation region is given by

Si(t) =Mi(t) + VA
i (0, tIAT), (12)

where the “+” in (12) denotes the Minkowski sum. Here,
Mi(t) represents all possible states of Qi at time t.

We now compute a buffer region between the separation
regions of any two vehicles such that the intruder requires at
least a duration of tBRD to travel through this region. This
ensures that it can deviate at most k̄ STP vehicles from their
trajectories within a duration of tIAT. In relative state space, the
buffer region is given by the BRS, VB

i (0, tBRD), corresponding
to the target set VA

i (tBRD, tIAT) with Hamiltonian

HB
i (xIi, λ) = min

ui∈Ui,uI∈UI ,
di∈Di,dI∈DI

λ · fr(xIi, ui, uI , di, dI). (13)

Intuitively, VB
i (0, tBRD) represents the set of all relative states

xIi from which it is possible to reach the boundary of
VA
i (tBRD, tIAT) within a duration of tBRD. Thus, as long as

the initial relative state is outside VB
i (0, tBRD), Qi does not

need to deviate from its path to avoid the intruder for at least
a duration of tBRD. Given VB

i (0, tBRD), the buffer region Bij(t)
at time t between vehicle Qi and a higher-priority vehicle Qj

is given by

Bij(t) = ∂Sj(t) +
(
−VB

i (0, tBRD)
)
. (14)

C. Trajectory Planning for Intruder Avoidance
In addition to maintaining the buffer between Qi and a

higher priority vehicle, Qj , we need to make sure that any
two STP vehicles accidentally do not come too close to each
other while applying the avoidance maneuver. Consequently,
it is sufficient to ensure that their relative state remains outside
the BRS, VC

ij(0, t
IAT), representing the set of all relative states

xij from which the vehicles Qi and Qj can enter the set Zij .
Thus, the lower priority vehicle should avoid the set

Oj
i (t) =Mj(t) + VC

ij(0, t
IAT). (15)

Finally, we compute the set of states from which Qi can
collide with any static obstacle, Ostatic

i . This set is given by
the BRS VS

i (t, t+ tIAT), representing the set of all states of Qi

at time t that can lead to a collision with a static obstacle for
some time τ > t for some control strategy of Qi. Thus, the
overall set of states that Qi needs to avoid is:

Gi(t) = VS
i (t, t+ tIAT)

⋃
∪i−1
j=1O

j
i (t)

⋃
∪i−1
j=1Bij(t). (16)

Given Gi(t), we compute a BRS VPP
i (t, tSTA

i) for trajectory
planning that contains the initial state of Qi and avoids Gi(t):

VPP
i (t, tSTA

i) ={y : ∃ui(·) ∈ Ui,∀di(·) ∈ Di,

xi(·) satisfies (4),

∀s ∈ [t, tSTA
i], xi(s) /∈ Gi(s),

∃s ∈ [t, tSTA
i], xi(s) ∈ Li, xi(t) = y},

(17)

with Hamiltonian

HPP
i (xi, λ) = min

ui∈Ui
max
di∈Di

λ · fi(xi, ui, di). (18)

VPP
i (·) ensures goal satisfaction for Qi in the absence of

intruder. The goal satisfaction controller is given by:

uPP
i (t, xi) = arg min

ui∈Ui
max
di∈Di

λ · fi(xi, ui, di) (19)

When intruder is not present in the system, Qi applies the
control uPP

i and we get the nominal trajectory of Qi. Once in-
truder appears in the system, Qi applies the avoidance control
uA
i and hence might deviate from its nominal trajectory. The

overall control policy for avoiding the intruder and collision
with other vehicles is thus given by:

u∗i (t, xi, xI) =

{
uPP
i (t, xi) xIi(t) 6∈ VA

i (t, tIAT)
uA
i (t, xIi) otherwise (20)

If Qi starts within VPP
i and uses the control u∗i , it is guaranteed

to avoid collision with the intruder and other STP vehicles,
regardless of the control strategy of QI . Finally, since we use
separation and buffer regions as obstacles during the trajectory
planning of Qi, it is guaranteed that atmost k̄ vehicles are
forced to deviate from their path due to the intruder.

D. Replanning after Intruder Avoidance

After the intruder disappears, we have to replan the tra-
jectories of the vehicles that were affected by QI . Let N RP

denote the set of all vehicles for whom replanning is required.
N RP can be obtained by checking if a vehicle Qi applied any
avoidance control during [t, t+ tIAT], i.e.,

N RP = {Qi : ∃t ∈ [t, t+ tIAT], xIi(t) ∈ VA
i (t, tIAT)}, (21)

where t denote the time at which the intruder was first detected
in the system. Recall that due to the presence of separation
and buffer regions, at most k̄ vehicles can be affected by QI ,
i.e., |N RP| ≤ k̄. The replanning for the vehicles in N RP can be
performed by assigning them the lowest priority and using the
nominal STP algorithm presented in Section II-B. Note that k̄
can be picked beforehand based on the available computation
resources during run-time so that this replanning can be done
in real time.

Remark 2: In this work, we assume worst-case scenarios
in terms of the behavior of the intruder, the effect of dis-
turbances, and the planned trajectories of each STP vehicle.
Consequently, we are able to guarantee safety and goal sat-
isfaction of all vehicles in all possible scenarios given the
bounds on intruder dynamics and disturbances. To achieve
denser operation of STP vehicles, known information about the
intruder, disturbances, and specifies of STP vehicle trajectories
may be incorporated; however, we defer such considerations
to future work.

Fig. 1: Correspondence between the MATLAB implementation
of Level Set Toolbox and BEACLS. In the case of this
paper, the block called “User’s Model and App.” would be
an implementation of an STP algorithm.

𝑉𝑁

𝑉𝑘

𝑉1

∇𝑛𝑉𝑘

∇2𝑉𝑘

∇1𝑉𝑘
𝐻𝑘 𝑉𝑘 𝑡 − Δ𝑡, 𝑥

𝑉 𝑡, 𝑥
𝑉2

𝑉 𝑡 − Δ𝑡, 𝑥

Fig. 2: BEACLS splits multi-dimensional arrays representing
the value function V (t, x) into appropriate overlapping chunks
according to processor configuration. Numerical gradients and
the Hamiltonian values of each chunk are computed in parallel
to produce the updated value function at the previous time step
(in the case of backward reachability). Finally, the chunks are
combined together to form the updated value function over the
entire computational domain.

IV. THE BERKELEY EFFICIENT API IN C++ FOR LEVEL
SET METHODS (BEACLS)

The STP algorithm requires an efficient computation of
reachable sets. Even though Level set toolbox [52] and helpe-
rOC library [62] together provide a computational tool to
solve a HJ PDE (see Section II-A for a brief description of
these libraries), these have not been sufficient to allow STP
used for large-scale trajectory planning, involving, for example
hundreds to thousands of vehicles. We propose BEACLS, the
Berkeley Efficient API in C++ for Level Set Methods, which
is an efficient implementation of the level set toolbox and
helperOC library that allows much faster computation than
the existing MATLAB implementation. In particular, it is able
to parallelize using GPUs to speed up computations by nearly
100 times.

In place of the native MATLAB functionalities and tool-
boxes used by the level set toolbox and helperOC library,
BEACLS uses several open source C++ libraries. These li-
braries include MATIO for loading and saving .mat files
which store value functions and trajectories, OpenCV for
visualizations, and several others for computation, as depicted
in Fig. 1.

The key feature that allows parallelized computation is the
splitting of multi-dimensional grids into smaller chunks. These
smaller chunks can appropriately fit into CPU cache and GPU
memory. Fig. 2 depicts the general procedure of splitting up
a grid, computing partial derivatives, and recombining the
chunks. A few other notable features are as follows:
• To allow parallel computation, the chunks have sufficient

overlap to allow correct gradient computations at the
boundaries of each chunk.

200.00

33.00

3.00 2.00

helperO
C in

 M
ATLAB

C++ in
 BEACLS

CUDA in
 BEACLS, 1

 G
PU

CUDA in
 BEACLS, 2

 G
PUs

Software implementation

0

50

100

150

200

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Fig. 3: Summary of computation times for the city simulation
environment in Section V. A 50-UAV simulation takes less
than 2 minutes with the CUDA implementation in BEACLS
using two GPUs, compared to 27 minutes with a non-CUDA
C++ implementation in BEACLS or 2.8 hours with helperOC
and the level set toolbox in MATLAB.

• Unlike the MATLAB libraries, the computational grid
is not explicitly stored in a multi-dimensional array, an
implementation that is necessary to improve computa-
tion time through vectorized computations in MATLAB.
Instead, BEACLS stores only the value function (and
not the grid) in multi-dimensional arrays, which greatly
reduces memory usage.

• As with the level set toolbox [52], the Hamiltonian is
approximated using the Lax-Friedrichs scheme, which
requires estimates of dissipation terms required for nu-
merical stability. The dissipation term is based on the sys-
tem dynamics over the entire computational grid. Since
BEACLS does not explicitly store the computational grid,
the dissipation term is computed approximately. This
implementation works well in our numerical simulations.

Figure 3 shows at a glance the computation times for
implementations of the level set methods used to solve the
HJI PDE in (1), which provides the BRS and optimal trajec-
tories for each vehicle. The software implementations are the
MATLAB level set toolbox in [52], a C++ implementation of
[52] in BEACLS, and [62], and a Compute Unified Device
Architecture (CUDA) implementation of [52] and [62] in
BEACLS with the C++ interface. The MATLAB and C++
implementations are run on a Core i7-5820K CPU, and
the CUDA implementation was run on one or two Geforce
GTX Titan X GPUs. When run on two GPUs, BEACLS is
approximately 100 times faster compared to the MATLAB
implementation.

This improvement in computation time greatly facilitates
case studies such as city-level airspace design, which may
involve testing different initial and goal positions at different
vehicle densities and wind speeds, as we demonstrate in
Section V. Trajectory planning with 50 vehicles takes less than
2 minutes, compared to 27 minutes for a non-CUDA C++ im-
plementation or 2.8 hours for the MATLAB implementation.

For even larger-scale case studies, a GPU-parallelized im-
plementation such as BEACLS may be necessary to keep the

48

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Fig. 4: City environment multiple UAV simulation setup. A 25
km2 area in the City of San Francisco is used as the space for
the 50-vehicle simulation. Vehicles originate from the blue star
and go to one of the four destinations, denoted by circles. Tall
buildings in the downtown area are used as static obstacles,
represented by the black contours.

computation tractable. For example, in the study presented
in Section VI involving multiple cities and 200 vehicles,
computation for each vehicle was approximately 4 minutes on
average using two GPUs. This is because a much finer grid
was needed to maintain positional accuracy over a much larger
geographical area. The entire simulation took approximately
13.3 hours. Extrapolating the computation time comparison in
Fig. 3, even a non-CUDA C++ implementation would take
prohibitively long – approximately 10 days.

BEACLS, along with more detailed documentation, is avail-
able at the BEACLS website1.

V. LARGE-SCALE MULTIPLE UAV SIMULATIONS: CITY
ENVIRONMENT

We now combine BEACLS with the STP algorithm for
the safe trajectory planning for a 50-UAV system in which
the vehicles are flying over a the city of San Francisco.
This setup can be representative of many UAV applications,
such as package delivery, aerial surveillance, etc. Using this
simulation, we investigate the resulting trajectories of vehicles
as a function of the amount of traffic and wind speed. Videos of
the city environment simulation with various vehicle densities
and wind speeds can be found on YouTube2.

A. Setup
We grid the City of San Francisco (SF) in California, USA,

and use it as our position space, as shown in Fig. 4. The origin
point for the vehicles is denoted by the blue star. This origin
point may represent an exit of an air highway connecting SF
to other cities in the Bay Area [63]. In general there may be

1 BEACLS website: https://github.com/HJReachability/beacls
2 Video link: https://youtu.be/1ocaBGZqSAE

https://github.com/HJReachability/beacls
https://youtu.be/1ocaBGZqSAE

multiple origin points; we will demonstrate this other case in
Section VI.

Four different areas in the city are chosen as the destinations
for the vehicles. Mathematically, the target sets Li of the
vehicles are circles of radius r in the position space, i.e. each
vehicle is trying to reach some desired set of positions. In
terms of the state space xi, the target sets are defined as

Li = {xi : ‖pi − ci‖2 ≤ r} (22)

where ci are centers of the target circles. In this simulation,
we use r = 100 meters. The four targets are represented by
four circles in Fig. 4. The destination of each vehicle is chosen
randomly from these four destinations. Finally, some areas in
downtown SF and the city hall are used as representative static
obstacles for the STP vehicles, denoted by black contours in
Fig. 4.

For this simulation, we use the following dynamics for each
vehicle:

ṗx,i = vi cos θi + dx,i

ṗy,i = vi sin θi + dy,i

θ̇i = ωi,

v ≤ vi ≤ v̄, |ωi| ≤ ω̄,
‖(dx,i, dy,i)‖2 ≤ dr

(23)

where xi = (px,i, py,i, θi) is the state of vehicle Qi,
pi = (px,i, py,i) is the position, θi is the heading, and
d = (dx,i, dy,i) represents Qi’s disturbances, for example
wind, that affect its position evolution. The control of Qi is
ui = (vi, ωi), where vi is the speed of Qi and ωi is the turn
rate; both controls have a lower and upper bound. To make our
simulations as close as possible to real scenarios, we choose
velocity and turn-rate bounds as v = 0 m/s, v̄ = 25 m/s,
ω̄ = 2 rad/s, aligned with the modern UAV specifications [64],
[65]. For planning, we choose the reduced control authority to
be Up

j = {(vr,j , ωr,j) : 11 m/s ≤ vr,j ≤ 13 m/s, |ωr,j | ≤
1.2 rad/s}. Given this reduced control authority, we obtain
a tracking error bound as well as a disturbance rejection
controller (see Section II-B).

The disturbance bounds are chosen to be either dr = 6 m/s
or dr = 11 m/s. These conditions correspond to moderate
breeze and strong breeze respectively on the Beaufort scale
[66]. In our simulations, we draw disturbance values uniformly
randomly given these bounds.

The scheduled times of arrival for all vehicles are chosen
to be same for all vehicles (0 without loss of generality) for
a high UAV density condition. For medium and low density
conditions, we separated the arrival times by 5 seconds and
10 seconds respectively, with the latest tSTA

i being 0. Note
that we have used same dynamics and input bounds across
all vehicles for clarity of illustration; however, STP can easily
handle more general systems of the form in which the vehicles
have different control bounds, tSTA

i and dynamics.
The goal of the vehicles is to reach their destinations while

avoiding a collision with the other vehicles or the static
obstacles. The joint state space of this 50-vehicle system is
150-dimensional (150D), making the joint trajectory planning
and collision avoidance problem intractable for direct analysis.
Therefore, we assign a priority ordering to vehicles and
solve the trajectory planning problem sequentially. For this
simulation, we assign a random priority order to fifty vehicles.

B. High UAV Density with 6 m/s Wind

We start with Q1 and sequentially compute the optimal
control policy and the latest departure time tLDT

j for each
vehicle. In presence of moderate winds, the obtained tracking
error bound is 5 meters. This means that given any trajectory
(which is a sequence of states over time) of vehicle, winds can
at most cause a deviation of 5 meters from this trajectory at
all times. Consequently, the vehicle will be within a distance
of 5 meters from the planned trajectory. Note that since all
vehicles have same dynamics, the error bound is also same for
all vehicles. This error bound is used to obtain the augmented
obstacles and the reduced target set L̃i. Note that since
disturbance directly impacts the computation of tracking error
bound, in general the size of augmented obstacles increases as
disturbance magnitude increases. We will illustrate the effect
of disturbance magnitude on the trajectories of vehicles in
Section V-C.

The nominal trajectory can now be obtained using a reduced
control authority starting from the initial state x0

j . The resulting
trajectories of vehicles for dr = 6 m/s and tSTA

j = 0 ∀j at
different times are shown in Fig. 5. As is evident from the
figures, the vehicles remain clear of all the static obstacles
(the black contours) and make progress towards reaching
their destinations, according to their planned trajectories. The
vehicles whose destinations are relatively close need less time
to travel to their destinations and thus they depart later.

(a) (b)

(c) (d)

Fig. 5: Snapshots of vehicle trajectories at approximately a)
1 minute, b) 3 minutes, c) 4 minutes, and d) 5 minutes after
the first vehicle departs. The wind speed is uniformly random
with a bound of dr = 6 m/s. The vehicles remain clear of all
static obstacles and of each other despite the disturbance in
the dynamics.

The full trajectories of vehicles from their departure to
arrival are shown in Fig. 6a. All vehicles reach their respective
destinations. A zoomed-in version of Fig. 6a near the red target

(a) Case 0: dr = 6m/s, tSTA
i = 0 (b) Case 1: dr = 11m/s, tSTA

i = 0

(c) Case 2: dr = 6m/s, tSTA
i =

5(i− 1)
(d) Case 3: dr = 11m/s, tSTA

i =
5(i− 1)

Fig. 6: Effect of the disturbance magnitude and the scheduled
times of arrival on vehicle trajectories. All trajectories are
simulated under uniformly random disturbance. The relative
separation in the scheduled times of arrival of vehicles de-
termines the number of lanes between a pair of origin and
destination, and more and more trajectories become time-
separated as this relative separation increases. The disturbance
magnitude determines the relative separation between different
lanes, and more and more trajectories become state-separated
as the disturbance increases.

(Fig. 7) illustrates that vehicles are also outside each other’s
danger zones (circles around the vehicles) as required.

It is interesting to note that the vehicles going to the
same destination take different trajectories. This is because
all vehicles have the same scheduled time of arrival, and
hence the lower-priority vehicles do not have the flexibility
to wait for the higher-priority vehicles. In order to ensure that
they reach their destinations on time, they must depart earlier
and take alternative trajectories to their destinations, forming
different “traffic lanes”. Thus, the vehicles’ trajectories are
state-separated trajectories, i.e., they follow different state
trajectories but at the same time.

The average trajectory computation time per vehicle is 2
seconds using the CUDA implementation of the level set
method in BEACLS. Computations were run on a desktop
computer with a Core i7 5820K processor and two GeForce
GTX Titan X graphics processing units. Recall that all of
the computation is done offline and the resulting BRS and
corresponding control policy are obtained as lookup tables. In
real time, computation and communication between vehicles is
not required. Only a lookup table query is required, and this
can be performed very quickly in real time. This illustrates
the capability of STP as a provably safe trajectory planning
algorithm for large multi-vehicle systems.

Without the CUDA implementation in BEACLS, the ap-
proximate computation time per vehicle is 33 seconds using

2800 2900 3000 3100 3200 3300 m

3700

3800

3900

4000

4100

4200 m

Fig. 7: Zoomed-in version of vehicle trajectories near the red
target in Fig. 6a. The STP algorithm ensures that the vehicles
are outside each other’s danger zones; here the smallest
distance between vehicles is just over 100 meters (blue and
red vehicles below the letter “H”).

the C++ implementation of the level set toolbox without
CUDA, and 200 seconds using the level set toolbox and
helperOC in MATLAB. A comparison of the total computation
time for all 50 vehicles is shown in Figure 3.

C. Effects of Disturbance and Scheduled Time of Arrival
In this section, we illustrate how the disturbance bound dr

in (23) and the relative tSTA’s of vehicles affect the vehicle
trajectories. For this purpose, we simulate the STP algorithm
in five scenarios:
• Case 0: dr = 6 m/s, tSTA

i = 0 ∀i (moderate breeze, high
UAV density; the simulation also shown in Figure 5)

• Case 1: dr = 11 m/s, tSTA
i = 0 ∀i (strong breeze, high

UAV density)
• Case 2: dr = 6 m/s, tSTA

i = 5(i−1) ∀i (moderate breeze,
medium UAV density)

• Case 3: dr = 11 m/s, tSTA
i = 5(i− 1) ∀i (strong breeze,

medium UAV density)
• Case 4: dr = 11 m/s, tSTA

i = 10(i− 1) ∀i (strong breeze,
low UAV density)

The interpretation of tSTA
i = 5(i − 1) is that the scheduled

time of arrival of any two consecutive vehicles is separated
by 5 seconds, which represents a medium vehicle density
scenario; a separation of 10 seconds represents a low vehicle
density scenario. dr = 6 m/s and dr = 11 m/s correspond
to the moderate breeze and strong breeze respectively on
Beaufort wind force scale [66].

Intuitively, as dr increases, it is harder for a vehicle to
closely track a particular nominal trajectory, which results in a
higher tracking error bound. As mentioned previously, with a 6
m/s wind speed, the tracking error bound is 5 meters; however,
with an 11 m/s wind speed, the tracking error bound becomes
35 meters. Thus, the vehicles need to be separated more from
each other in space, compared to with a 6 m/s wind speed, to
ensure that they do not enter each other’s danger zones. This is

also evident from comparing the results corresponding to Case
0 (Fig. 6a) and Case 1 (Fig. 6b). As the disturbance magnitude
increases from dr = 6 m/s (moderate breeze) to dr = 11 m/s
(strong breeze), the vehicles’ trajectories get farther apart from
each other. Since tSTA is same for all vehicles, the vehicles
trajectories are still predominately state-separated.

We next compare Case 0 (Fig. 6a) and Case 2 (Fig. 6c). The
difference between these two cases is that vehicles have a 5-
second separation in their schedule times of arrival in Case 2.
When vehicles Qi and Qj (j > i) have same scheduled time of
arrival as in Case 0, and are going to the same destination, they
are constrained to travel at the same time to make sure they
reach the destination by the designated tSTA. However, since
Qi is high-priority, it is able to take an optimal trajectory (in
terms of the total time of travel to destination) and Qj has to
settle for a relatively sub-optimal trajectory. Thus, all vehicles
going to a particular destination take different trajectories,
creating a “band” of trajectories between the origin and the
destination, as shown in Fig. 6a; the high-priority vehicles
take a relatively straight trajectory between the origin and the
destination whereas the low-priority vehicles take a (relatively
sub-optimal) curved trajectory. If we think of an air highway
between the origin and the destination, then vehicles take
different lanes of that highway to reach the destination in
Case 0. Thus, the trajectories of vehicles in this case are state-
separated. However, when tSTA

j > tSTA
i , then Qj is not bound

to travel at the same time as Qi; it can wait for Qi to depart
and take a shorter trajectory later on. Thus, vehicles travel
in a single lane in this case, as shown in Fig. 6c. In other
words, they take the same trajectory to the destination, but at
different times. Thus, the trajectories of vehicles in this case
are time-separated.

Note that the exact number of lanes depends on both the
disturbance (wind speed) and separation of scheduled times of
arrival (vehicle density). As the disturbance increases, vehicles
need to be separated more from each other to ensure safety.
A larger arrival time difference between vehicles is also able
to ensure this separation even if the vehicles were to take the
same lane. As shown in Fig. 6d, a difference of 5 seconds in
the tSTA’s is not sufficient to achieve a single lane behavior
for stronger 11 m/s wind conditions. However, the number
of lanes is significantly fewer than that in Case 1 (Fig. 6b).
Finally, a separation of 10 seconds in tSTA’s ensure that we
get the single lane behavior even in the presence of 11 m/s
winds, leading to time-separated trajectories, as shown in Fig.
8. Videos of the simulations can be found on YouTube3.

Given our observations about the simulations presented, one
can conclude, more generally, that the relative magnitude of
disturbance and scheduled times of arrival separation deter-
mines the number of lanes and type of trajectories that emerge
out of the STP algorithm. For a fixed disturbance magnitude,
as the separation in the scheduled times of arrival of vehicles
increases, the number of lanes between a pair of origin and
destination decreases, and more and more trajectories become
time-separated. On the other hand, for a fixed separation in
the scheduled times of arrival of vehicles, as the disturbance
magnitude increases, the number of lanes between a pair of
origin and destination increases, and more and more trajecto-
ries become state-separated.

3 Video link: https://youtu.be/1ocaBGZqSAE

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Fig. 8: Trajectories of 50 vehicles for Case 4: dr = 11
m/s, tSTA

i = 10(i− 1). Since different vehicles have different
scheduled times of arrival, there is a single lane between every
origin-destination pair.

VI. LARGE-SCALE MULTIPLE UAV SIMULATIONS:
MULTI-CITY ENVIRONMENT

We next use STP to design trajectories for a 200-UAV
system where UAVs are flying through a multi-city region.

A. Setup
We use a part of the San Francisco Bay Area in California,

USA as our position space, as shown in Fig. 9. We consider
the UAVs flying to and from four cities: Richmond, Berke-
ley, Oakland, and San Francisco. The blue region in Fig. 9
represents bay (water). This environment is different from the
city environment in Section V in that here the UAVs need
to fly for longer distances and through a high-density vehicle
environment with strong winds, but have no static obstacles
like tall buildings. Due to the much larger number of vehicles
and longer trajectory time horizons, many more reachable
sets need to be computed, and, even more crucially, each
computation must be done on a much larger computational
domain. Therefore, the use of GPU parallelization is essential
for making this simulation possible.

The vehicles are flying to and from the four cities indicated
by the four circles. The origin and destination of each vehicle
is chosen randomly from these four cities. The vehicle dynam-
ics are given by (23). We choose velocity and turn-rate bounds
as v = 0 m/s, v̄ = 25 m/s, ω̄ = 2 rad/s. The disturbance
bound is chosen as dr = 11 m/s, which corresponds to “strong
breeze” on Beaufort wind force scale [66]. The scheduled time
of arrival tSTA for vehicles are chosen as 5(i− 1) seconds.

The goal of the vehicles is to reach their destinations while
avoiding a collision with the other vehicles. The joint state
space of this 200-vehicle system is 600-dimensional, making
the joint trajectory planning and collision avoidance problem
intractable for direct analysis. Therefore, we again use STP
and assign a priority order to vehicles to solve the trajectory
planning problem sequentially.

https://youtu.be/1ocaBGZqSAE

0 5 10 15 km

0

5

10

15 km

Fig. 9: Multi-city simulation setup. A 300 km2 area of San
Francisco Bay Area is used as the state-space for vehicles.
STP vehicles fly to and from the four cities indicated by the
four disks. The simulations are performed under the strong
winds condition with dr = 11 m/s.

B. Results

The resulting trajectories of vehicles are shown in Fig. 10a.
Once again, the vehicles remain clear of all other vehicles
and reach their respective destinations. Since the vehicles’
scheduled times of arrival are separated by 5 seconds, the
trajectories are predominately time-separated, with roughly
two lanes for each pair of cities (one for going from city
A to city B and another for from city B to city A). A
high density of vehicles is achieved in the center since the 4
trajectories are intersecting in the center (Richmond-Oakland,
Oakland-Richmond, Berkeley-San Francisco, San Francisco-
Berkeley), but the STP algorithm ensures safety despite this
high-density, as shown in the zoomed-in version of the center
at an intermediate time when a large number of vehicles are
passing through the central region (Fig. 10b).

We also simulated the system for the case in which tSTA
i =

0 ∀i. As is evident from Fig. 11, we get multiple lanes
between each pair of cities in this case and trajectories become
predominately state-separated, as we expect based on the
discussion in Section V-C.

The average computation time per vehicle is 4 minutes
using BEACLS on a desktop computer with a Core i7 5820K
processor and two GeForce GTX Titan X graphics processing
units. The computation time is much longer than in the
previous simulation in SF because of the larger space over
which planning is done. Once again all the computation is
done offline and only a look-up table query is required in real-
time, which can be performed very efficiently. Extrapolating
the computation time comparison in Fig. 3, the MATLAB
implementation would take prohibitively long – approximately
90 days for the entire simulation. This simulation illustrates the
scalability and the potential of deploying the STP algorithm

(a) (b)

Fig. 10: (a) Trajectories obtained from the STP algorithm for
the multi-city simulation with dr = 11 m/s, tSTA

i = 5(i − 1).
(b) Zoomed-in version of the central area. A high density of
vehicles is achieved at the center because of the intersection of
several trajectories; however, the STP algorithm still ensures
that vehicles do not enter each other’s danger zones and reach
their destinations.

Fig. 11: Vehicle trajectories for dr = 11 m/s, tSTA
i = 0.

Since different vehicles have same scheduled times of arrival,
a multiple-lane behavior is observed between every pair of
cities.

Fig. 12: Buffer regions for different k̄ (best visualized with
colors). As k̄ decreases, a larger buffer is required between
vehicles to ensure that the intruder spends more time traveling
through this buffer region so that it forces fewer vehicles to
apply an avoidance maneuver.

with BEACLS for provably safe trajectory planning for large
multi-vehicle systems.

VII. CITY ENVIRONMENT SIMULATIONS IN THE
PRESENCE OF AN INTRUDER

A. Setup
In addition to the setup in Section V-A, the vehicles now

also need to account for the possibility of the presence of an
intruder for a maximum duration of tIAT =10 s. The intruder
dynamics are given by (23).

B. Results
We present the simulation results for k̄ = 3. The resultant

buffer region is shown in Blue in Figure 12. For the compar-
ison purposes, we also compute the buffer regions for k̄ = 2
and k̄ = 4. As shown in Figure 12, a bigger buffer is required
between vehicles when k̄ is smaller. Intuitively, when k̄ is
smaller, a larger buffer is required to ensure that the intruder
spends more time “traveling” through this buffer region so
that it can affect fewer vehicles within the same duration of
tIAT =10 s.

These buffer region computations along with the induced
obstacle computations are performed sequentially for each
vehicle to obtain G(·) in (16). This overall obstacle set is
then used during their trajectory planning and the control
policy uPP(·) is computed, as defined in (19). Finally, the
corresponding nominal trajectories are obtained by executing
control policy uPP(·). The nominal trajectories and the overall
obstacles for different vehicles are shown in Figure 13. The
numbers in the figure represent the vehicle numbers. The
nominal trajectories (solid lines) are well separated from each
other to ensure collision avoidance even during a worst-case
intruder “attack”. At any given time, the vehicle density is
low to ensure that the intruder cannot force more than three
vehicles to apply an avoidance maneuver. This is also evident
from large obstacles induced by vehicles for the lower priority
vehicles (dashed circles). This lower density of vehicles is the
price that we pay for ensuring that the replanning can be done
efficiently in real-time.

In Figure 14, we plot the distance between an STP vehicle
and the intruder when the vehicle applies the control policies
uPP(·) (Red line) and uA (Blue line) in the presence of the
intruder. Black dashed line represents the collision radius
r =100 m between the vehicle and the intruder. If the vehicle

5048

47

49

46

43

44

42

40

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Fig. 13: Nominal trajectories and induced obstacles by dif-
ferent vehicles. The nominal trajectories (solid lines) are well
separated from each other to ensure that the intruder cannot
force more than 3 vehicles to apply an avoidance maneuver.

0 2 4 6 8 10

Time (s)

0

50

100

150

200

250

D
is

ta
n
c
e
 t
o
 i
n
tr

u
d
e
r

(m
)

Collision below this distance

Avoiding

Not avoiding

Fig. 14: The trajectory of a STP vehicle when it applies the
nominal controller vs when it applies the avoidance control.
The vehicle is forced to apply the avoidance maneuver in the
presence of an intruder, which can cause vehicle’s deviation
from its nominal trajectory.

continues to apply the control policy uPP(·) in the presence
of an intruder, the intruder enters in its danger zone. Thus,
it is forced to apply the avoidance control, which can cause
a deviation from the nominal trajectory, but will successfully
avoid the intruder, as indicated by the Blue curve.

The relative buffer region between vehicles is computed
under the assumption that both the STP vehicle and the
intruder are trying to collide with each other; this is to ensure
that the intruder will need at least a duration of tBRD to
reach the boundary of the avoid region of the next vehicle,
irrespective of the control applied by the vehicle. However, a
vehicle will be applying the control policy uPP(·) unless the
intruder forces it to apply an avoidance maneuver, which may
not necessarily correspond to the policy that the vehicle will
use to deliberately collide with the intruder. Therefore, it may
not be able to affect k̄ vehicles even with its best strategy
to affect maximum vehicles. In this simulation, the intruder
is able to force only two vehicles to apply an avoidance
maneuver. The set of vehicles that will need to replan their
trajectories is given by N RP = {Q1, Q2}. This conservatism
in our method is discussed further in Section VII-C.

The time for planning and replanning for each vehicle is
approximately 15 minutes on a MATLAB implementation on

a desktop computer with a Core i7 5820K processor. With
BEACLS using two GeForce GTX Titan X graphics process-
ing units, this computation time is reduced to approximately 9
seconds per vehicle. So for k̄ = 3, replanning would take less
than 30 seconds. Since reachability computations in BEACLS
are highly parallelizable, replanning should be possible to
do within a fraction of seconds with more computational
resources.

C. Discussion
The simulations illustrate the effectiveness of reachability

in ensuring that the STP vehicles safely reach their respective
destinations even in the presence of an intruder. However,
they also highlight some of the conservatism in the worst-case
reachability analysis. For example, in the proposed algorithm,
we assume the worst-case disturbances and intruder behavior
while computing the buffer region and the induced obstacles,
which results in a large separation between vehicles and hence
a lower vehicle density overall, as evident from Figure 13.
Similarly, while computing the buffer region, we assumed that
a vehicle is deliberately trying to collide with the intruder so
we once again consider the worst-case scenario, even though
the vehicle will only be applying the nominal control strategy
uPP(·), which is usually not be same as the worst-case control
strategy. This worst-case analysis is essential to guarantee
safety regardless of the actions of STP vehicles, the intruder,
and disturbances, given no other information about the in-
truder’s intentions and no model of disturbances except for the
bounds. However, the conservatism of our results illustrates the
need and the utility of acquiring more information about the
intruder and disturbances, and of incorporating knowledge of
the nominal strategy uPP(·) in future work.

VIII. CONCLUSION AND FUTURE WORK

Provably safe multi-vehicle trajectory planning in an impor-
tant problem that needs to be addressed to ensure that vehicles
can fly in close proximity of each other. Recently, the STP
algorithm was proposed for multi-vehicle trajectory planning
problem that scales linearly with the number of vehicles.
We propose BEACLS which can leverage the computation
power of GPUs along with the linear scaling of the STP
framework for efficient and provably safe large-scale multi-
vehicle trajectory planning. We demonstrate how different
types of space-time trajectories emerge naturally out of the
STP algorithm for different disturbance conditions and other
problem parameters.

We also propose an algorithm to account for an adversar-
ial intruder in sequential trajectory planning. The proposed
method ensures that only a fixed number of vehicles need
to replan their trajectories once the intruder disappears, irre-
spective of the total number of vehicles. Thus, the replanning
process is feasible in real-time. Future work includes exploring
methods that can account for multiple simultaneous intruders,
reducing conservatism in the current reachability analysis,
and deploying the proposed framework on a multi-vehicle
hardware testbed.

REFERENCES

[1] M. Chen, S. Bansal, J. F. Fisac, and C. J. Tomlin, “Robust sequential
trajectory planning under disturbances and adversarial intruder,” Trans-
actions on Control Systems Technology, pp. 1–17, 2018.

[2] B. Tice, “Unmanned aerial vehicles: The force multiplier of the 1990s,”
Airpower Journal, 1991.

[3] W. DeBusk, “Unmanned aerial vehicle systems for disaster relief:
Tornado alley,” in Infotech@ Aerospace Conferences, 2010.

[4] Amazon.com, Inc., “Amazon Prime Air,” 2016. [Online]. Available:
http://www.amazon.com/b?node=8037720011

[5] AUVSI News, “UAS aid in South Carolina tornado investigation,”
2016. [Online]. Available: http://www.auvsi.org/blogs/auvsi-news/2016/
01/29/tornado

[6] BBC Technology, “Google plans drone delivery service for 2017,” 2016.
[Online]. Available: http://www.bbc.com/news/technology-34704868

[7] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic UAV and UGV system for precision agriculture,”
Transactions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[8] S. Hayat, E. Yanmaz, T. X. Brown, and C. Bettstetter, “Multi-objective
UAV path planning for search and rescue,” in International Conference
on Robotics and Automation, 2017.

[9] Joint Planning and Development Office, “Unmanned Aircraft Systems
(UAS) comprehensive plan,” Federal Aviation Administration, Tech.
Rep., 2014.

[10] T. Prevot, J. Rios, P. Kopardekar, J. Robinson III, M. Johnson, and
J. Jung, “UAS Traffic Management (UTM) concept of operations to
safely enable low altitude flight operations,” in AIAA Aviation Technol-
ogy, Integration, and Operations Conference, 2016.

[11] P. Chandler, S. Rasmussen, and M. Pachter, “UAV cooperative path
planning,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2000, p. 4370.

[12] M. Radmanesh and M. Kumar, “Flight formation of UAVs in presence
of moving obstacles using fast-dynamic mixed integer linear program-
ming,” Aerospace Science and Technology, vol. 50, pp. 149–160, 2016.

[13] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, July 1998.

[14] G. Chasparis and J. Shamma, “Linear-programming-based multi-vehicle
path planning with adversaries,” in American Control Conference, 2005.

[15] J. Van den Berg, L. Ming, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in International Conference
on Robotics and Automation, 2008.

[16] A. Wu and J. How, “Guaranteed infinite horizon avoidance of un-
predictable, dynamically constrained obstacles,” Autonomous Robots,
vol. 32, no. 3, pp. 227–242, 2012.

[17] R. Olfati-Saber and R. Murray, “Distributed cooperative control of
multiple vehicle formations using structural potential functions,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 495–500, 2002.

[18] Y. Chuang, Y. Huang, M. D’Orsogna, and A. Bertozzi, “Multi-vehicle
flocking: Scalability of cooperative control algorithms using pairwise
potentials,” in International Conference on Robotics and Automation,
2007.

[19] M. Radmanesh, P. H. Guentert, M. Kumar, and K. Cohen, “Analytical
pde based trajectory planning for unmanned air vehicles in dynamic
hostile environments,” in American Control Conference, 2017.

[20] R. Beard and T. McLain, “Multiple UAV cooperative search under
collision avoidance and limited range communication constraints,” in
Conference on Decision and Control, 2003.

[21] T. Schouwenaars and E. Feron, “Decentralized cooperative trajectory
planning of multiple aircraft with hard safety guarantees,” in AIAA
Guidance, Navigation and Control Conference, 2004.

[22] D. Stipanovic, P. Hokayem, M. Spong, and D. Siljak, “Cooperative
avoidance control for multiagent systems,” Journal of Dynamic Systems,
Measurement, and Control, vol. 129, no. 5, p. 699, 2007.

[23] M. Massink and N. De Francesco, “Modelling free flight with colli-
sion avoidance,” in Conference on Engineering of Complex Computer
Systems, 2001.

[24] M. Althoff and J. Dolan, “Set-based computation of vehicle behaviors
for the online verification of autonomous vehicles,” in Conference on
Intelligent Transportation Systems, 2011.

[25] P. Barooah, P. G. Mehta, and J. P. Hespanha, “Mistuning-based control
design to improve closed-loop stability margin of vehicular platoons,”
Transactions on Automatic Control, vol. 54, no. 9, pp. 2100–2113, 2009.

[26] Y. Lin and S. Saripalli, “Collision avoidance for UAVs using reachable
sets,” in Conference on Unmanned Aircraft Systems, 2015.

[27] P. Frihauf and M. Krstic, “Leader-enabled deployment onto planar
curves: A PDE-based approach,” Transactions on Automatic Control,
vol. 56, no. 8, pp. 1791–1806, 2010.

[28] E. Lalish, K. Morgansen, and T. Tsukamaki, “Decentralized reactive
collision avoidance for multiple unicycle-type vehicles,” in American
Control Conference, 2008.

[29] G. Hoffmann and C. Tomlin, “Decentralized cooperative collision avoid-
ance for acceleration constrained vehicles,” in Conference on Decision
and Control, 2008.

[30] M. Chen, J. Shih, and C. Tomlin, “Multi-vehicle collision avoidance
via Hamilton-Jacobi reachability and mixed integer programming,” in
Conference on Decision and Control, 2016.

http://www.amazon.com/b?node=8037720011
http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado
http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado
http://www.bbc.com/news/technology-34704868

[31] F. Lian and R. Murray, “Real-time trajectory generation for the coopera-
tive path planning of multi-vehicle systems,” in Conference on Decision
and Control, 2002.

[32] A. Ahmadzadeh, N. Motee, A. Jadbabaie, and G. Pappas, “Multi-vehicle
path planning in dynamically changing environments,” in International
Conference on Robotics and Automation, 2009.

[33] J. Bellingham, M. Tillerson, M. Alighanbari, and J. How, “Cooperative
path planning for multiple UAVs in dynamic and uncertain environ-
ments,” in Conference on Decision and Control, 2002.

[34] D. Panagou, M. Turpin, and V. Kumar, “Decentralized goal assignment
and trajectory generation in multi-robot networks: A multiple Lyapunov
functions approach,” in International Conference on Robotics and Au-
tomation, 2014.

[35] H. Min, F. Sun, and F. Niu, “Decentralized UAV formation tracking
flight control using gyroscopic force,” in Conference on Computational
Intelligence for Measurement Systems and Applications, 2009.

[36] R. W. Beard, T. W. McLain, D. B. Nelson, D. Kingston, and D. Jo-
hanson, “Decentralized cooperative aerial surveillance using fixed-wing
miniature UAVs,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1306–
1324, 2006.

[37] D. Panagou, D. M. Stipanović, and P. G. Voulgaris, “Distributed coor-
dination control for multi-robot networks using Lyapunov-like barrier
functions,” Transactions on Automatic Control, vol. 61, no. 3, pp. 617–
632, 2015.

[38] X. Gu, Y. Zhang, J. Chen, and L. Shen, “Real-time decentralized
cooperative robust trajectory planning for multiple UCAVs air-to-ground
target attack,” Journal of Aerospace Engineering, vol. 229, no. 4, pp.
581–600, 2015.

[39] Y. Kuwata and J. P. How, “Cooperative distributed robust trajectory
optimization using receding horizon MILP,” Transactions on Control
Systems Technology, vol. 19, no. 2, pp. 423–431, 2010.

[40] M. Innocenti, L. Pollini, and A. Bracci, “Cooperative path planning
and task assignment for unmanned air vehicles,” Journal of Aerospace
Engineering, vol. 224, no. 2, pp. 121–131, 2010.

[41] I. Kaminer, O. Yakimenko, V. Dobrokhodov, A. Pascoal, N. Hov-
akimyan, V. Patel, C. Cao, and A. Young, “Coordinated path following
for time-critical missions of multiple UAVs via L1 adaptive output
feedback controllers,” in AIAA Guidance, Navigation and Control Con-
ference and Exhibit, 2007, p. 6409.

[42] T. W. McLain and R. W. Beard, “Coordination variables, coordination
functions, and cooperative timing missions,” Journal of Guidance,
Control, and Dynamics, vol. 28, no. 1, pp. 150–161, 2005.

[43] E. Barron, “Differential games with maximum cost,” Nonlinear analysis:
Theory, methods & applications, vol. 14, no. 11, pp. 971–989, 1990.

[44] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games,”
Transactions on Automatic Control, vol. 50, no. 7, pp. 947–957, 2005.

[45] O. Bokanowski, N. Forcadel, and H. Zidani, “Reachability and minimal
times for state constrained nonlinear problems without any controllabil-
ity assumption,” Journal on Control and Optimization, vol. 48, no. 7,
pp. 4292–4316, 2010.

[46] O. Bokanowski and H. Zidani, “Minimal time problems with moving
targets and obstacles,” IFAC Proceedings Volumes, vol. 44, no. 1, pp.
2589–2593, 2011.

[47] K. Margellos and J. Lygeros, “Hamilton-Jacobi formulation for reach-
avoid differential games,” Transactions on Automatic Control, vol. 56,
no. 8, pp. 1849–1861, 2011.

[48] J. Fisac, M. Chen, C. Tomlin, and S. Sastry, “Reach-avoid problems
with time-varying dynamics, targets and constraints,” in Conference on
Hybrid Systems: Computation and Control, 2015.

[49] J. Sethian, “A fast marching level set method for monotonically advanc-
ing fronts,” National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595,
1996.

[50] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2006.

[51] I. Mitchell, “Application of level set methods to control and reachability
problems in continuous and hybrid systems,” Ph.D. dissertation, Stanford
University, 2002.

[52] ——, “A toolbox of level set methods,” Department of Computer
Science, University of British Columbia, Vancouver, BC, Canada,
http://www. cs. ubc. ca/˜ mitchell/ToolboxLS/toolboxLS.pdf, Tech. Rep.
TR-2004-09, 2004.

[53] A. Bayen, I. Mitchell, M. Osihi, and C. Tomlin, “Aircraft autolander
safety analysis through optimal control-based reach set computation,”
Journal of Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 68–77,
2007.

[54] J. Ding, J. Sprinkle, S. Sastry, and C. Tomlin, “Reachability calculations
for automated aerial refueling,” in Conference on Decision and Control,
2008.

[55] P. Bouffard, “On-board model predictive control of a quadrotor he-
licopter: Design, implementation, and experiments,” Master’s thesis,
University of California, Berkeley, 2012.

[56] H. Huang, J. Ding, W. Zhang, and C. Tomlin, “A differential game
approach to planning in adversarial scenarios: A case study on capture-
the-flag,” in International Conference on Robotics and Automation,
2011.

[57] M. Chen, J. Fisac, S. Sastry, and C. Tomlin, “Safe sequential path
planning of multi-vehicle systems via double-obstacle Hamilton-Jacobi-
Isaacs variational inequality,” in European Control Conference, 2015.

[58] S. Bansal, M. Chen, J. Fisac, and C. Tomlin, “Safe sequential path
planning of multi-vehicle systems under presence of disturbances and
imperfect information,” in American Control Conference, 2017.

[59] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in Conference on
Decision and Control, 2017.

[60] M. G. Crandall and P.-L. Lions, “Two approximations of solutions of
Hamilton-Jacobi equations,” Mathematics of Computation, vol. 43, no.
167, pp. 1–19, Sep. 1984.

[61] S. Bansal, M. Chen, and C. J. Tomlin, “Safe and resilient multi-
vehicle trajectory planning under adversarial intruder,” arXiv preprint
arXiv:1711.02540, 2017.

[62] helperOC Team, “helperOC library,”
https://github.com/HJReachability/helperOC, 2019.

[63] M. Chen, Q. Hu, J. Fisac, K. Akametalu, C. Mackin, and C. Tomlin,
“Reachability-based safety and goal satisfaction of unmanned aerial
platoons on air highways,” Journal of Guidance, Control, and Dynamics,
pp. 1–14, 2017.

[64] 3D Robotics, “Solo specs: Just the facts,” 2015. [Online]. Avail-
able: https://news.3dr.com/solo-specs-just-the-facts-14480cb55722#
.w7057q926

[65] New Atlas, “Amazon Prime Air.” [Online]. Available: http://newatlas.
com/amazon-new-delivery-drones-us-faa-approval/36957/

[66] Wikipedia, “Beaufort scale.” [Online]. Available:
_scalehttps://en.wikipedia.org/wiki/Beaufort\protect\unhbox\
voidb@x\bgroup\def ˙scale#Modern

https://news.3dr.com/solo-specs-just-the-facts-14480cb55722#.w7057q926
https://news.3dr.com/solo-specs-just-the-facts-14480cb55722#.w7057q926
http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
https://en.wikipedia.org/wiki/Beaufort\protect \unhbox \voidb@x \bgroup \def _
https://en.wikipedia.org/wiki/Beaufort\protect \unhbox \voidb@x \bgroup \def _

	Introduction
	Background
	Time-Varying Hamilton-Jacobi Reachability
	Sequential Trajectory Planning Under Disturbances

	Response to Intruders
	Problem Setup and Solution Approach for Intruder Avoidance
	Computation of Separation and Buffer Regions
	Trajectory Planning for Intruder Avoidance
	Replanning after Intruder Avoidance

	The Berkeley Efficient API in C++ for Level Set Methods (BEACLS)
	Large-Scale Multiple UAV Simulations: City Environment
	Setup
	High UAV Density with 6 m/s Wind
	Effects of Disturbance and Scheduled Time of Arrival

	Large-Scale Multiple UAV Simulations: Multi-City Environment
	Setup
	Results

	City Environment Simulations in the Presence of an Intruder
	Setup
	Results
	Discussion

	Conclusion and Future Work
	References

