# Introduction to Reachability Somil Bansal Hybrid Systems Lab, UC Berkeley

## Outline

- Introduction to optimal control
- Reachability as an optimal control problem
- Various shades of reachability

## **Goal of This Presentation**

- Reachability is nothing but an optimal control/differential game problem
- Everything in reachability ultimately amounts to solving a PDE.
- Any (small enough) optimal control problem (including reachability problems) can be solved using the Level Set Toolbox.

## **Optimal Control**

- Optimize a cost function subject to system dynamics.
- Discrete-time systems:

$$J^* = \min_{x(\cdot), u(\cdot)} \sum_{t=0}^{N-1} C(x(t), u(t), t) + l(x(N))$$
  
subject to  $x(t+1) = f(x(t), u(t), t); \quad x(0), N - \text{fixed}$ 

Continuous-time systems:

$$J^* = \min_{x(\cdot), u(\cdot)} \int_{t_0}^T C(x(t), u(t), t) dt + l(x(T))$$
  
subject to  $\dot{x} = f(x, u, t); \quad x(t_0), T - \text{fixed}$ 

## A Quick Example: Dubins Car



Quick question: what are we trying to do to the system here?



# **Solving Optimal Control Problems**

- Approach1: Calculus of Variations (CoV)
  - Takes an optimization perspective
  - Uses Lagrange multipliers to eliminate constraints
  - Derive first-order optimality conditions
  - Globally optimal solution is not guaranteed

$$J^* = \min_{x(\cdot), u(\cdot)} \int_{t_0}^T C(x(t), u(t), t) dt + l(x(T))$$
  
subject to  $\dot{x} = f(x, u, t); \quad x(t_0), T - \text{fixed}$ 

## **Solving Optimal Control Problems**

- Approach2: Principle of Dynamic Programming
  - Gives the globally optimal solution.
  - Principle: The optimal state trajectory remains optimal at intermediate points in time.



## **Dynamic Programming Example\***



Step T: 
$$V_T(x = 4) = 0$$

Step T-1: 
$$V_{T-1}(2) = w_{down}(2) + V_T(4)$$
  
 $V_{T-1}(2) = 1 + 0 = 1$ 

$$V_{T-1}(3) = w_{right}(3) + V_T(4)$$
  
 $V_{T-1}(3) = 4 + 0 = 4$ 

| Intersection | W <sub>right</sub> | W <sub>down</sub> |
|--------------|--------------------|-------------------|
| 1            | 5                  | 1                 |
| 2            | -                  | 1                 |
| 3            | 4                  | -                 |

Step T-2:  $V_{T-2}(1) = \min \left[ (w_{right}(1) + V_{T-1}(2)), (w_{down}(1) + V_{T-1}(3)) \right]$  $V_{T-2}(1) = \min \left[ (5+1), (1+4) \right] = 5$ 

#### \*Shamelessly copied from Sylvia Herbert's presentation

# Magic of Dynamic Programming

- Compute the set of states that can reach the target set within 4s?
  - Assume that we can compute the set of states that can reach any other given set of states within 1s.



Recall our optimal control problem:

Minimize 
$$J(x,t) = \int_t^T C(x(t), u(t)) dt + l(x(T))$$
  
Subject to  $\dot{x} = f(x, u, t)$ 

• Define cost from (t, x)

$$V(x(t),t) = \min_{u(\cdot)} \left[ \int_t^T C(x(t),u(t)) dt + l(x(T)) \right]$$

We are interested in finding cost from state x and time 0

$$V(x(0),0) = \min_{u(\cdot)} \left[ \int_0^T C(x(t),u(t)) dt + l(x(T)) \right]$$

Dynamic programming principle implies that:

$$V(x(t),t) = \min_{u} \left[ V(x(t+\delta),t+\delta) + \int_{t}^{t+\delta} C(x,u)dt \right]$$



$$V(x(t),t) = \min_{u} \left[ V(x(t+\delta),t+\delta) + \int_{t}^{t+\delta} C(x,u)dt \right]$$
$$V(x(t),t) + \frac{dV}{dt}(x(t),t)\delta + \nabla V(x(t),t) \cdot \frac{dx}{dt}\delta \quad C(x,u)\delta$$
$$Taylor$$
Expansion Approximation

$$V(x(t),t) = \min_{u(t)} \left[ V(x(t),t) + \frac{dV}{dt}(x(t),t)\delta + \nabla V(x(t),t) \cdot \frac{dx}{dt}\delta + C(x,u)\delta \right]$$

$$V(x(t),t) = \min_{u(t)} \left[ V(x(t),t) + \frac{dV}{dt}(x(t),t)\delta + \nabla V(x(t),t) \cdot \frac{dx}{dt}\delta + C(x,u)\delta \right]$$

$$V(x(t),t) = V(x(t),t) + \min_{u(t)} \left[ \frac{dV}{dt} (x(t),t)\delta + \nabla V(x(t),t) \cdot \frac{dx}{dt}\delta + C(x,u)\delta \right]$$

$$\frac{V(x(t),t)}{V(x(t),t)} = \frac{V(x(t),t)}{u(t)} + \min_{u(t)} \left[ \frac{dV}{dt}(x(t),t)\delta + \nabla V(x(t),t) \cdot \frac{dx}{dt}\delta + C(x,u)\delta \right]$$

$$0 = \min_{u(t)} \left[ \frac{dV}{dt}(x(t), t)\delta + \nabla V(x(t), t) \cdot \frac{dx}{dt}\delta + C(x, u)\delta \right]$$
$$0 = \min_{u(t)} \left[ \frac{dV}{dt}(x(t), t) + \nabla V(x(t), t) \cdot \frac{dx}{dt} + C(x, u) \right]$$



# Hamilton-Jacobi Bellman(HJB) PDE

Problem:

Minimize 
$$J(x,t) = \int_{t}^{T} C(x(t), u(t)) dt + l(x(T))$$
  
Subject to  $\dot{x} = f(x, u, t)$ 

Solution A final-value PDE

$$\frac{dV}{dt} + \min_{u} \{ \nabla V(x(t), t) \cdot f(x, u) + C(x, u) \} = 0$$
$$V(x(T), T) = l(x(T))$$

• What is V(x(t), t)?



Where is my optimal control?

## **Curse of Dimensionality**

- Wow! One single PDE for any optimal control problem.
  - What is the problem here?





#### Level Set Toolbox

- Developed by Prof. Ian Mitchell during his PhD
- Can solve any initial-value PDE of the form:

$$\frac{dV}{dt} + H^*(x, \nabla V(x(t), t), t) = 0$$
$$V(x(0), 0) = l(x(0))$$

But optimal control problem is a final value PDE .....⊗

$$\frac{dV}{dt} + \min_{u} \{ \nabla V(x(t), t) \cdot f(x, u) + C(x, u) \} = 0$$
$$V(x(T), T) = l(x(T))$$

Good news: They are interchangeable!

$$\frac{dV}{dt} + H^*(x, \nabla V(x(t), t), t) = 0$$

$$V(x(0), 0) = l(x(0))$$

$$W(x, T - t) = V(x, t)$$

$$\frac{dW}{dt} - H^*(x, \nabla W(x(t), t), t) = 0$$

$$W(x(T), T) = l(x(T))$$

So we can solve any optimal control problem with the toolbox!

# **Optimal Control: Quick Recap**

- Optimal control problem:
  - Optimize a cost function subject to system dynamics.
- Two approaches:
  - Calculus of Variations:
    - Gives local solutions, but faster to compute.
  - Dynamic Programming:
    - Gives global solution
    - A Final-value PDE needs to be solved
      - May not even have a classical solution!
      - Curse of dimensionality!
      - Can be solved using Level Set Toolbox for low dimensional problems.

 Problem: Find the set of all states that can reach a given set of states *L* within a time duration of T.



 $\mathcal{R}(T) = \{x_0: \exists u, s.t. \ x(\cdot) \ satisfies \ \dot{x} = f(x, u), x(0) = x_0; \exists t \in [0, T], s.t. \ x(t) \in \mathcal{L}\}$ 

Any thoughts?



# Reachability



• What does V(x(t), t) represent?



• What are V(x(t), t) for each of the following trajectories?



 $V(x(t),t) = \min_{u} l(x(T))$ 

# Reachability

- So what does V(x(t), t) represent?
  - The value of l(x) that we will reach at time T
- How do I answer my original question?

 $x(0) \in \mathcal{R}(T) \Leftrightarrow V(x(0), 0) \leq 0$ 

 $x(0) \notin \mathcal{R}(T) \Leftrightarrow V(x(0), 0) > 0$ 



So reachability is nothing but an optimal control problem.



How to get "target-reaching" control?

 $u^* = \underset{u}{\operatorname{argmin}} \{ \nabla V(x(t), t) \cdot f(x, u, t) \}$ 

#### But hold on...

• What are V(x(t), t) for each of the following trajectories?



What they should be?

 $\mathcal{R}(T) = \{x_0 : \exists u, s.t. \ x(\cdot) \ satisfies \ \dot{x} = f(x, u), x(0) = x_0; \exists t \in [0, T], s.t. \ x(t) \in \mathcal{L}\}$  $x(0) \in \mathcal{R}(T) \Leftrightarrow V(x(0), 0) \le 0$ 

 Need to account for the fact that trajectories can reach the target but then leave it.

> $\min_{u} (\min_{t \in [0,T]} l(x(t)))$ Subject to  $\dot{x} = f(x, u, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$

Does this fix the issue?



## Freezing the Trajectories in the Target

 Need to account for the fact that trajectories can reach the target but then escape it.

> $\min_{u} (\min_{t \in [0,T]} l(x(t)))$ Subject to  $\dot{x} = f(x, u, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$

• What is the corresponding PDE?

$$\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$$
$$V(x(T), T) = l(x(T))$$
$$H^* = \min_{u}\{\nabla V(x(t), t) \cdot f(x, u, t)\}$$

## Reachability: Reachable Sets vs Tubes

 Backward Reachable Set (BRS): the set of all states that can reach a target set of states *L* exactly at time T.

$$\mathcal{R}'(T) = \{x_0: \exists u, s.t. \ x(\cdot) \text{ satisfies } \dot{x} = f(x, u), x(0) = x_0; x(T) \in \mathcal{L}\}$$

 $\min_{u} l(x(T))$ Subject to  $\dot{x} = f(x, u, t)$   $\mathcal{L} = \{x: l(x) \le 0\}$ 

 $\frac{dV}{dt} + H^*(x, \nabla V(x(t), t), t) = 0$ V(x(T), T) = l(x(T)) $H^* = \min_{\mathcal{H}} \{\nabla V(x(t), t) \cdot f(x, u, t)\}$ 

 Backward Reachable Tube (BRT): the set of all states that can reach a target set of states *L* within a duration of time T.

 $\mathcal{R}(T) = \{x_0: \exists u, s.t. \ x(\cdot) \ satisfies \ \dot{x} = f(x, u), x(0) = x_0; \exists t \in [0, T], s.t. \ x(t) \in \mathcal{L}\}$ 

 $\min_{u} (\min_{t \in [0,T]} l(x(t)))$ Subject to  $\dot{x} = f(x, u, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$   $\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$ V(x(T), T) = l(x(T)) $H^* = \min_{u}\{\nabla V(x(t), t) \cdot f(x, u, t)\}$ 

#### Backward Reachable Tube: Example



#### Backward Reachable Set: Example



## **Computing Backward Reachable Tube**

- 1. Define target set  $\mathcal{L}$  for the system to reach within a given time horizon:
- 2. Define implicit level set function for final time  $l(z), \mathcal{L} = \{z: l(z) \le 0\}$
- 3. Find an appropriate value function V(z(t), t)

 $\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$ V(x(T), T) = l(x(T)) $H^* = \min_{u}\{\nabla V(x(t), t) \cdot f(x, u, t)\}$ 

4. Retrieve zero sub-level of level set function at initial time



#### **Reachability: Key Takeaways**

- Reachability is just an optimal control problem.
- Backward Reachable Set (BRS) vs Backward Reachable Tube (BRT)
- Both can be computed using the Level Set Toolbox.
- Suffers from the curse of dimensionality

#### Introducing the Disturbance

- Suppose our dynamics were:  $\dot{x} = f(x, u, d)$ 
  - *u* control, *d* disturbance

• And cost were: 
$$J(x,t) = \int_t^T C(x(t), u(t), d(t)) dt + l(x(T))$$

Now, we want to solve the following *differential* game:

$$V(x(t),t) = \min_{u(\cdot)} \max_{d(\cdot)} \left[ \int_{t}^{T} C(x(t),u(t),d(t)) dt + l(x(T)) \right]$$

A similar PDE can be derived in this case (called HJI PDE)

## **Optimal Control vs Differential Game**

|                                            | Static       | Evolving Over Time |
|--------------------------------------------|--------------|--------------------|
| One agent<br>(input)                       | Optimization | Optimal Control    |
| Multiple agents<br>(input and disturbance) | Game Theory  | Differential Games |

# Hamilton-Jacobi Isaacs(HJI) PDE

**Problem:** 

Minimize 
$$J(x,t) = \int_{t}^{T} C(x(t), u(t), d(t))dt + l(x(T))$$
  
Subject to  $\dot{x} = f(x, u, d, t)$ 

Solution A final-value PDE  $\frac{dV}{dt} + \min_{u} \max_{d} \left\{ \nabla V(x(t), t) \cdot f(x, u, d) + C(x, u, d) \right\} = 0$ V(x(T), T) = l(x(T))

• What is V(x(t), t)?



Where is my optimal control?

# **Reachability With Disturbance**

Problem: Find the set of all states that can *reach* a given set of states *L* despite the disturbance within a time duration of T.



 $\mathcal{R}(T) = \{x_0: \exists u, s.t. \forall d, x(\cdot) \text{ satisfies } \dot{x} = f(x, u, d), x(0) = x_0; \exists t \in [0, T], s.t. x(t) \in \mathcal{L}\}$ 

- What does this definition mean?
- How to solve this problem?



## **Reachability With Disturbance**

• We can again formulate it as a differential game

 $\min_{u} \max_{d} \min_{t \in [0,T]} l(x(t))$ Subject to  $\dot{x} = f(x, u, d, t)$  $\mathcal{L} = \{x : l(x) \le 0\}$ 

What is the corresponding PDE?

$$\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$$
$$V(x(T), T) = l(x(T))$$
$$H^* = \min_u \max_d \{\nabla V(x(t), t) \cdot f(x, u, d, t)\}$$

How to get "target-reaching" control?

$$u^* = \underset{u}{\operatorname{argmin}} \max_{d} \left\{ \nabla V(x(t), t) \cdot f(x, u, d, t) \right\}$$

#### Reachability With Disturbance: Key Takeaways

- Very similar to classic reachability; just an extra max
- Backward Reachable Set (BRS) vs Backward Reachable Tube (BRT)
- Both can be computed using the Level Set Toolbox.
- Suffers from the curse of dimensionality

# Reachability With Disturbance: Quick Trivia

Problem: Find the set of all states that can *reach* a given set of states *L* for some disturbance within a time duration of T.

 $\mathcal{R}(T) = \{x_0: \exists u, \exists d, s.t. \ x(\cdot) \ satisfies \ \dot{x} = f(x, u, d), x(0) = x_0; \exists t \in [0, T], s.t. \ x(t) \in \mathcal{L}\}$ 

What does this definition mean?

How to solve this problem?



#### Reachability With Disturbance: Trivia Solution

Disturbance is like control here

 $\min_{u} \min_{d} \min_{t \in [0,T]} l(x(t))$ Subject to  $\dot{x} = f(x, u, d, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$ 

What is the corresponding PDE?

$$\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$$
$$V(x(T), T) = l(x(T))$$
$$H^* = \min_u \min_d \{\nabla V(x(t), t) \cdot f(x, u, d, t)\}$$

# Shades of Reachability: Avoid Set

Problem: Find the set of all states that can *avoid* a given set of states *L despite the disturbance* for a time duration of T.



 $\mathcal{R}(T) = \{x_0: \exists d, s.t. \forall u, x(\cdot) \text{ satisfies } \dot{x} = f(x, u, d), x(0) = x_0; \exists t \in [0, T], s.t. x(t) \in \mathcal{L}\}$ 

- What does this definition mean?
- How to solve this problem?



## **Reachability: Avoid Set**

Simply exchange the role of input and disturbance

 $\max_{u} \min_{d} \min_{t \in [0,T]} l(x(t))$ Subject to  $\dot{x} = f(x, u, d, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$ 

What is the corresponding PDE?

$$\frac{dV}{dt} + \min\{0, H^*(x, \nabla V(x(t), t), t)\} = 0$$
$$V(x(T), T) = l(x(T))$$
$$H^* = \max_u \min_d \{\nabla V(x(t), t) \cdot f(x, u, d, t)\}$$

How to get "target-avoiding" control?

$$u^* = \operatorname*{argmax}_{u} \min_{d} \left\{ \nabla V(x(t), t) \cdot f(x, u, d, t) \right\}$$

#### Avoid Set: Example



#### Shades of Reachability: Forward Reachable Set

 Problem: Find the set of all states that I can reach *from* a given set of states *L* at time T.



 $F(T) = \{x_T: \exists u, s.t. x(\cdot) \text{ satisfies } \dot{x} = f(x, u), x(0) \in \mathcal{L}; x(T) = x_T\}$ 

- What does this definition mean?
- How to solve this problem?



#### **Forward Reachable Set**

• Define a function l(x) such that,

$$\mathcal{L} = \{x \colon l(x) \le 0\}$$

Now consider the problem,

$$V(x(t), t) = \max_{u} l(x(T))$$
  
Subject to  $\dot{x} = f(x, u, t)$ 

• Will this work?



#### **Forward Reachable Set**

• Again it is an optimal control problem.

 $\max_{u} l(x(T))$ Subject to  $\dot{x} = f(x, u, t)$  $\mathcal{L} = \{x: l(x) \le 0\}$ 

What is the corresponding PDE?



#### Forward Reachable Set Trivia

 Problem: Find the set of all states that I can reach *from* a given set of states *L despite the disturbance* at time T.

 $F(T) = \{x_T: \exists u, s.t. \forall d, x(\cdot) \text{ satisfies } \dot{x} = f(x, u, d), x(0) \in \mathcal{L}; x(T) = x_T\}$ 

Solve the following PDE:

$$\frac{dV}{dt} + H^*(x, \nabla V(x(t), t), t) = 0$$
$$V(x(0), 0) = l(x(0))$$
$$H^* = \max_u \min_d \{\nabla V(x(t), t) \cdot f(x, u, t)\}$$

#### Forward Reachable Set: Key Takeaways

- Gives an initial value PDE
- Forward Reachable Set (FRS) vs Forward Reachable Tube (FRT)
- Both can be computed using the Level Set Toolbox.
- Suffers from the curse of dimensionality

# Shades of Reachability: Obstacles

Problem: Find the set of all states that can *reach* a given set of states *L* without hitting the obstacle (G) despite the disturbance within a time duration of T.



What does this definition mean?



## **Reachability With Obstacles**

- Again can be formulated as a differential game
- Value function can be shown to satisfy the following equation:

$$\max \{ \frac{dV}{dt} + \min\{0, H * (x, \nabla V(x(t), t), t)\}, g(x) - V(x, t)\} = 0$$
$$V(x(T), T) = \max\{l(x, T), g(x, T)\}$$
$$H^* = \min_u \max_d \{\nabla V(x(t), t) \cdot f(x, u, d, t)\}$$

How to get "target-reaching" control without hitting the obstacle?

$$u^* = \underset{u}{\operatorname{argmin}} \max_{d} \left\{ \nabla V(x(t), t) \cdot f(x, u, d, t) \right\}$$

#### **Reachability With Obstacles: Example**



#### **Reachability With Obstacles: Example**



#### Shades of Reachability: Key Takeaways

- Everything in reachability ultimately amounts to solving a PDE.
- Different min-max combinations appear in the PDE based on what control and disturbance are trying to do.
- Min with zero appears in the PDE depending on whether a set or a tube is being computed.
- Initial or final value PDE is solved based on whether a FRS or a BRS is being computed
- Obstacles can be considered
- Any combination above can be computed using the Level Set Toolbox.

#### **Reachability: Final Remarks**

- Reachability theory has much more rigorous mathematical foundation.
- Time-varying targets/obstacles can also be treated very easily.

#### Thank You!

somil@berkeley.edu